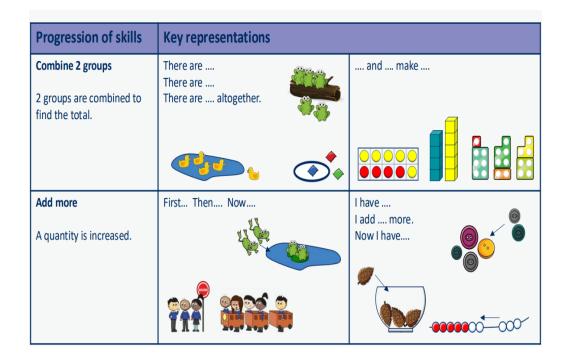

Nova Primary School Calculation Guidance 2024-2025

At Nova Primary School, we want to ensure our pupils: experience a variety of manipulatives; use accurate mathematical talk; and consolidate fluency facts in meaningful contexts. Our calculation guidance has been aligned with the White Rose Maths calculation policy; this will support use of manipulatives and representations for the Concrete – Pictorial – Abstract approach. Mathematical language (sentence focus) and key vocabulary are linked to the 'Ready to progress' criteria produced by the DfE as part of their assessments of pupils' learning. This document also lists the key steps in the White Rose Maths schemes of learning that support each of the 'Ready to progress' criteria, in the same sections as the national curriculum objectives. In many cases, the criteria are also addressed in other steps and in other blocks, for example looking at addition and subtraction in the context of measures. It is important to read the teaching points for each unit prior to planning (found in the expanded Ready to Progress documents).



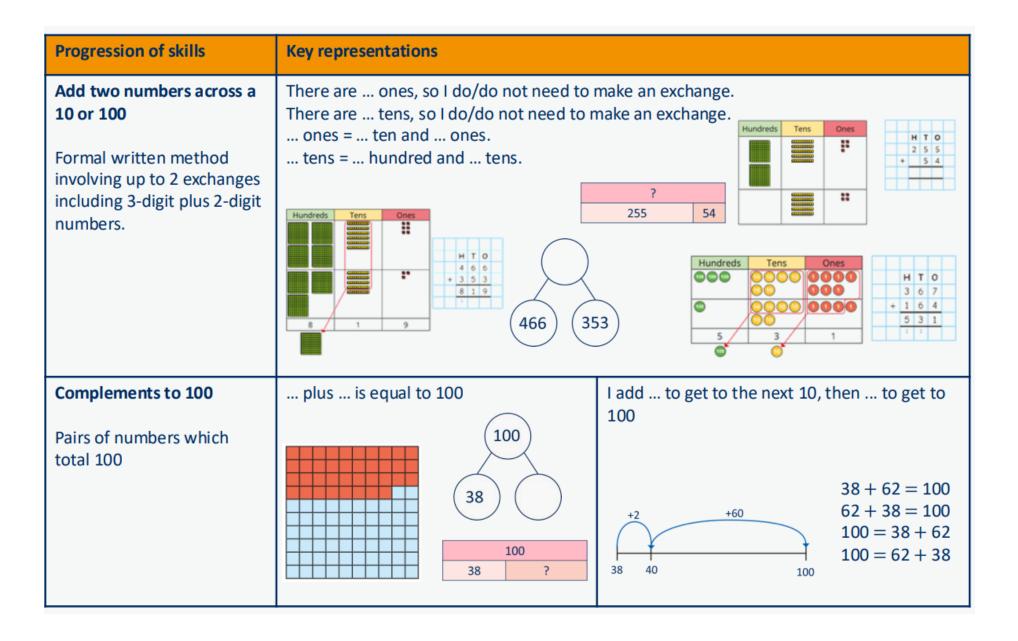
Progression of Skills – Addition

Reception	Conceptually subitise to 5	
	• 1 more	
	Notice the composition of numbers within 10	
	Combine 2 groups	
	Add more	
Year 1	Add together	
	Add more	
	Bonds within 10	
	Related facts within 20	
	Missing numbers	
Year 2	Add 1s to any number (related facts)	
	Add three 1-digit numbers	
	Add across a 10	
	Add multiples of 10	
	Add 10s to any number	
	Add two 2-digit numbers (not across a ten)	
	• Add two 2-digit numbers (across a ten)	
	Missing numbers	
Year 3	Add 1s, 10s and 100s to a 3-digit number	
	Add two numbers (no exchange)	
	Add two numbers across a 10 or 100	
	Complements to 100	
	Add fractions with the same denominator within 1 whole	
	Calculate the duration of events	

Year 4	Add 1s, 10s and 100s to a 4-digit number			
	Add up to two 4-digit numbers			
	Add decimal numbers in the context of money			
	Add fractions and mixed numbers with the same denominator beyond 1 whole			
Year 5	Add using mental strategies			
	Add whole numbers with more than 4 digits			
	Add decimals with up to 2 decimal places			
	Complements to 1			
	Add fractions with denominators that are a multiple of one another			
Year 6	Add integers up to 10 million			
	Add decimals with up to 3 decimal places			
	Order of operations			
	Negative numbers			
	Add fractions			

Reception	 Have a deep understanding of numbers to 10, including the composition of each number. Subitise (recognise quantities without counting) up to 5 Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 and some number bonds to 10, including double facts. 		
Progression of skills	Key representations		
Conceptually subitise to 5 Notice the parts that make up the whole.	What do you see? How do you see it?		
1 more Continue to link to stories, songs and rhymes.	1 more than is	1 2 3 4 5 6 7 8 9 10	
Notice the composition of numbers within 10 Link to stories, songs and rhymes.	How many? How many altogether? How many altogether?	How many ways can you make?	

Year 1 Progression of skills	 Read, write and interpret mathematical statements involving addition (+) and equals (=) signs. Represent and use number bonds within 20 Add 1-digit and 2-digit numbers to 20, including zero. Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as 7 = + 2 Key representations 			
Add together (aggregation) 2 quantities are combined to find the total.	There are There are There are altogether. is a part is a part is equal to + is the whole. $4+2=2+4=6=2+4$			
Add more (augmentation) A quantity is increased.	First Then Now	I start at I jump on I land on 1 2 3 4 5 6 7 8 9 10	plus is equal to is equal to + $4 + 2 = 6$ $2 + 4 = 6$ $6 = 4 + 2$ $6 = 2 + 4$	


Progression of skills	Key representations			
Bonds within 10	is made of and and make	can be partitioned into and	plus is equal to $6 + 0 = 6$	
Include bonds for each number within 10		6	5 + 1 = 6 4 + 2 = 6	
Encourage children to notice patterns.		0000	3 + 3 = 6 2 + 4 = 6 1 + 5 = 6 0 + 6 = 6	
Related facts within 20	I know that and =	more than is	What patterns do you	
Make links to known facts.	so and =	so more than is 0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20	notice? 5+2=7 15+2=17 7=5+2 17=15+2	
Missing numbers	How many more do you need to make?	If is the whole and is a part, the other part must	plus is equal to	
Make links to known facts.		be 6 2 ?	$2 + \square = 6$ $6 = 2 + \square$	
		2	0 1 2 3 4 5 6 7 8 9 10	

Year 2	 Recall and use addition facts to 20 fluently, and derive and use related facts up to 100 Add numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and 1s a two-digit number and 10s 2 two-digit numbers adding 3 one-digit numbers Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. 			
Progression of skills	Key representations			
Add ones to any number (related facts) Make links to known facts.	I know that and = so and =	What do you notice? Can you continue the pattern? 5+2=7 $15+2=17$ $25+2=27$		
Add three 1-digit numbers Prompt children to understand that addition can be done in any order and to make links to known facts.	and are a bond to 10 10 + = 8 9 1	Pouble + =	What do you notice? Which addition is the easiest to calculate? $8+9+1=\\8+1+9=\\9+1+8=$	

Progression of skills	Key representations				
Add across a 10	can be partitioned into and		I add to get to th	en I add	8 + 5 = 13 28 + 5 = 33
Partition the number being added to make a full ten.					
	8 + 5 3 4 5 6 7 8 9 10 3	11 12 13	28 + 5	3 4 5 6	7 8 9 10 11 12 13 +2 +3 +3 +2 +3 +3 +2 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3
Add multiples of 10	ones + ones = ones	\\/hat	t is the same?		
Add mattiples of 10	so tens + tens = tens		t is different?	2	20
Make links to known facts within ten.	1 1 2 3 4 5 6 7 8 9 10			30	
	3 + 2 = 5 $30 + 20 = 50$	 0 10	20 30 40 50 60 70 80 9	0 100	? 3 ? 30
Add 10s to any number	tens + tens = tens		dd I need to add 10		and =
Make links to known facts.	tens and ones =	tin		so and :	=
	+	21 31 41	2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 52 53 54 55 56 57 58 59 60		- 20 = 50 - 20 = 54

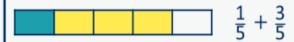
Progression of skills	Key representations		
Add 2-digit numbers (not across a ten) Lining up ones and tens in columns will support with later written methods.	ones + ones = ones tens + tens = tens	Tens Ones	3 ones + 1 one = 4 ones 4 tens + 2 tens = 6 tens 6 tens + 4 ones = 64 21 ? 43 21
Add 2-digit numbers (across a ten) Begin to exchange 10 ones for 1 ten.	ones = ten and ones	12 ones = 4 tens + 3	7 ones = 12 ones 1 ten and 2 ones 2 tens + 1 ten = 8 tens 3 2 ones = 82
Missing numbers Solve missing number problems and use the inverse to check.	How many more do you need to make? $6 + = 10$ $10 - = 6$	If is a whole and is a part, then is the other part.	can be partitioned into and $10 + 8 = 12 + \square$

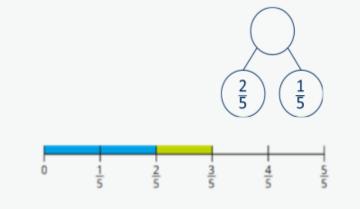
Year 3	 Add numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds. Add numbers with up to three digits, using formal written methods of columnar addition. Add fractions with the same denominator within 1 whole. Calculate the time taken by particular events or tasks. 		
Progression of skills	Key representations		
Add 1s, 10s or 100s to a 3-digit number Emphasis on mental strategies including number bonds and related facts. Prompt children to notice which digit changes.	The ones/tens/hundreds Hundreds Tens One 444 + 5 = 444 + 50 = 444 + 500 =		What patterns do you notice? 235 + 3 = $235 + 30 =$ $235 + 300 =$ $111 +$ $604 + 20 =$ $604 + 50 =$ $111 +$ $111 +$ $111 =$ $111 +$
Add two numbers (no exchange) Mental strategies and introduction of formal written method.	ones + ones = on tens + tens = tens hundreds + hundred	S	7 345 432 Tens Ones 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Progression of skills

Key representations


Add fractions with the same denominator within 1 whole

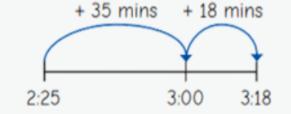

Make links with known facts.


When adding fractions with the same denominator, I only add the numerator.

... fifths + ... fifths = ... fifths

Calculate the duration of events


Find durations of time between a given start and end point. Children will need to calculate complements to 60 From ... to ... o'clock is ... minutes.


From ... o'clock to ... is ... minutes.

The total time taken is ... minutes.

Year 4
Progression of skills
Add 1s, 10s and 100 4-digit number
Emphasis on menta strategies including bonds and related for Prompt children to which digit changes
Add up to two 4-dig numbers
Formal written met

- Add numbers with up to 4 digits using a formal written method.
- Solve simple measure and money problems involving fractions and decimals to 2 decimal places.
- Add fractions with the same denominator.

Key representations

Os to a

number facts. notice

The ones/tens/hundreds/thousands column will increase by ...

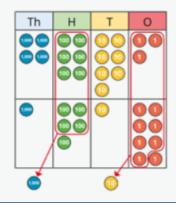
$$3,425 + 3 =$$
 $3,425 + 300 =$ $3,425 + 3,000 =$

What patterns do you notice?

$$2,350 + 3 =$$

 $2,350 + 30 =$
 $2,350 + 300 =$

$$6,040 + 200 =$$
 $6,040 + 500 =$
 $6,040 + 900 =$


$$2,211 +$$
 = $2,251$

git

thod with up to 3 exchanges. Encourage children to estimate and use inverse operations to check answers to calculations.

There are ... ones/tens/hundreds so I do/do not need to make an exchange.

I can exchange 10 ... for 1 ...

	Th	Н	Т	0
	4	6	7	3
+	1	5	1	8
	6	1	9	1
	1		1	

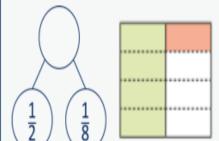
Progression of skills	Key representations		
Add decimal numbers in the context of money	pence + pence = pence pounds + pounds = pounds	£3.25 can be partitioned into £3 + 20p + 5p	
Emphasis on partitioning and use of number lines rather than formal written calculations.	45p + 25p = 70p £2 + £3 = £5 £5 + 70p = £5.70	£2.45	
Add fractions and mixed numbers with the same denominator beyond 1 whole	When adding fractions with the same den fifths $+$ fifths $=$ fifths $\frac{3}{5} + \frac{4}{5} = \frac{7}{5} = 1\frac{2}{5}$	nominator, I only add the numerator. $\frac{+\frac{3}{5}}{0}$	

Year 5 Add whole numbers with more than 4 digits, including using formal written methods. Add numbers mentally with increasingly large numbers. Add decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 Add fractions with the same denominator, and denominators that are multiples of the same number. **Progression of skills Key representations** Add using mental strategies To add ..., I can add ... then subtract ... TTh Add 1s, 10s, 100s, etc. to 6,458 99 any number. Use number bonds and +10048,650 + 300 =related facts. +99 48,650 + 30,000 =48,650 + 30 =6,458 6,557 6,558 Add whole numbers with I can exchange 10 ... for 1 ... TTh Th more than 4 digits Encourage children to + 1 6 2 3 1 4 2 8 0 5 estimate and use inverse operations to check answers to calculations. 8 9 9 2 6 2 0 5 8

Progression of skills Key representations Add decimals with up to 2 I do/do not need to make an exchange because ... decimal places I can exchange 10 ... for 1 ... Hth Thth Tth 1 . 2 8 1 **3**3 **600** Progress from the same + 2 - 5 4 **60 60** number of decimal places to Hundredths Ones Tenths a different number of **60) 60)** (m) (m) (m) decimal places, and from no **69** 69 + 3 - 2 1 **600** exchange to exchange. 000 **600** Complements to 1 0.3 +0.35 +Pairs of numbers with up to 3 decimal places which total 1 0.44 0.4 Encourage children to make links with bonds to 10 and 4 + 6 = 100.4 + 0.6 = 1complements to 100 and 71 0.71 44 + 56 = 1000.44 + 0.56 = 11,000 100 444 + 556 = 1,0000.444 + 0.556 = 1

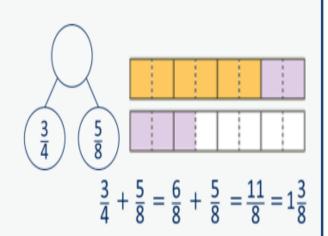
0.444

Progression of skills


Key representations

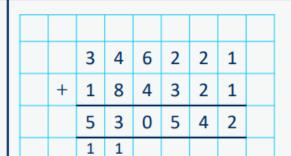
Add fractions with denominators that are a multiple of one another

Encourage children to convert fractions to the same denominator before adding.


Progress from adding fractions within 1 whole to adding fractions beyond 1 whole.

The denominator has been multiplied by ..., so the numerator needs to be multiplied by... for the fractions to be equivalent.

$$\frac{1}{2} + \frac{1}{8} = \frac{4}{8} + \frac{1}{8} = \frac{5}{8}$$


Year 6 million

- Add larger numbers, using the formal written method of columnar addition.
- Use their knowledge of the order of operations to carry out calculations involving the 4 operations.
- Calculate intervals across zero.
- Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions.

Progression of skills

Add integers up to 10

Encourage children to estimate and use inverse operations to check answers to calculations.

Key representations

	?	
2,354	750	1,500

	8	1		8	5	
+			0	6		
	9	9	5		8	

Add decimals with up to 3 decimal places

Progress to numbers with digits in different place value columns.

Encourage children to check that they have lined up the columns correctly.

I do/do not need to make an exchange because ...

0	Tth	Hth	Thth
0			000 000 000
00	<u> </u>	000	00 0
5 1	2	6	2
		0	

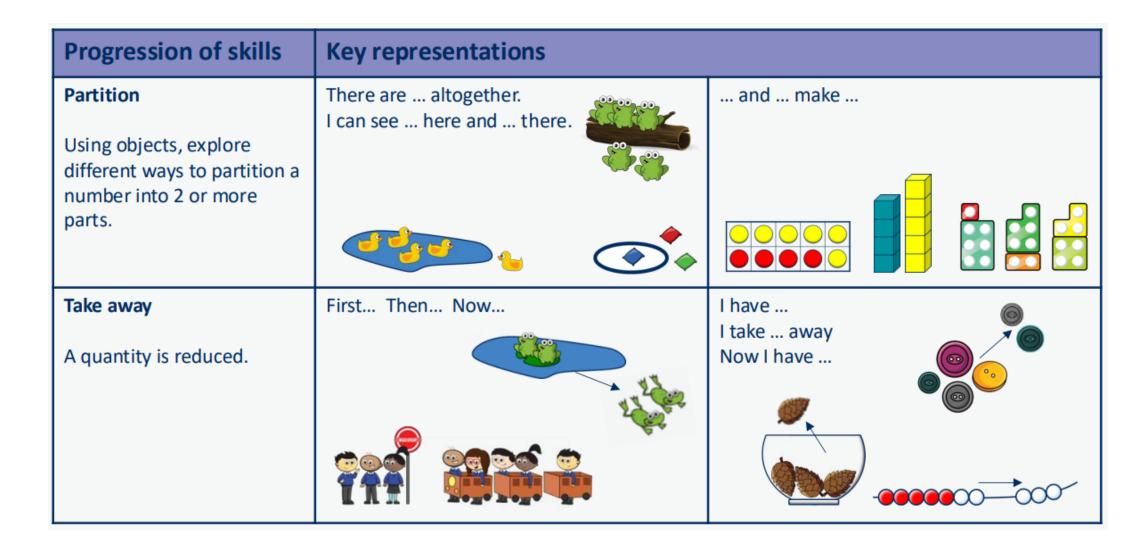
	3	· 1	0	8
+	2	1	5	4
	5	2	6	2
			1	

	1	5	0	2	7	
+		9	5	8		
	2	4	6	0	7	
	1		1			

Progression of skills	Key representations	
Order of operations	has greater priority than, so the first part	t of the calculation I need to do is
Calculations in brackets should be done first. Multiplication and division should be performed before addition and subtraction. *When no brackets are shown and the operations have the same priority, work left to right.	(3 + 4) × 2 × and + + and -	$3 + 4 \times 2 = 11$ $3 \times 4 + 2 = 14$
Negative numbers Children add to negative numbers and carry out calculations which cross 0	plus is equal to $-3 + 5 = 2$ $-5 -4 -3 -2 -1 0 1 2 3 4 5$	-5 -4 -3 -2 -1 0 1 2 3 4 5 The difference between - 5 and -1 is 4
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

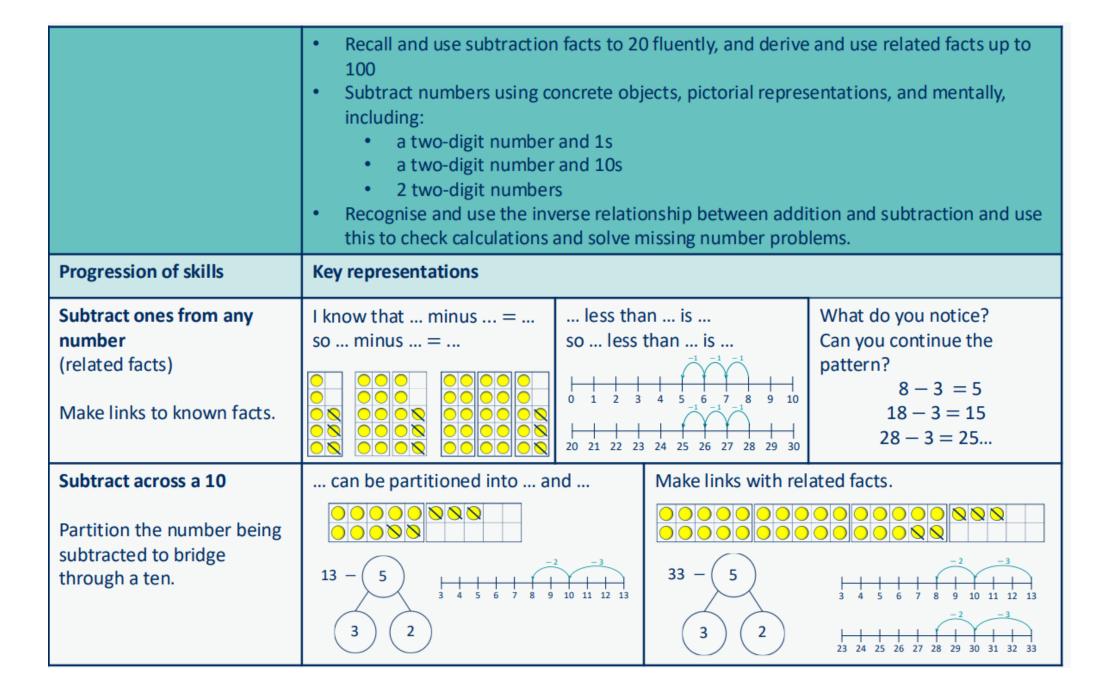
Progression of skills Key representations Add fractions The denominator has been ...is made up of ... wholes The lowest common multiplied by ..., so the multiple of ... and ... is ... and ... Convert fractions to the numerator needs to be same denominator before multiplied by ... adding. Progress from fractions where one denominator is a multiple of $\frac{5}{12}$ the other, to any fractions and then to mixed numbers. $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$

 $1\frac{1}{6}$


Progression of Skills - Subtraction

Reception	Conceptually subitise to 5	
	• 1 less	
	Notice the composition of numbers within 10	
	• Partition	
	Take away	
Year 1	Find a part	
	Take away	
	Bonds within 10	
	Related facts within 20	
	Missing numbers	

Year 2	Subtract 1s from any number (related facts)			
	Subtract across a 10			
	Subtract multiples of 10			
	Subtract 10s from any number			
	Subtract two 2-digit numbers (not across a ten)			
	Subtract two 2-digit numbers (across a ten)			
	Missing numbers			
Year 3	Subtract 1s, 10s and 100s from a 3-digit number			
	Subtract two numbers (no exchange)			
	Subtract two numbers across a 10 or 100			
	Complements to 100			
	Subtract fractions with the same denominator within 1 whole			


Year 4	Subtract 1s, 10s, 100s and 1,000s from a 4-digit number			
	Subtract up to two 4-digit numbers			
	Subtract decimal numbers in the context of money			
	Subtract fractions and mixed numbers with the same denominator			
Year 5	Subtract whole numbers with more than 4 digits			
	Subtract using mental strategies			
	Subtract decimals with up to 2 decimal places			
	Complements to 1			
	Subtract fractions with denominators that are a multiple of one another			
Year 6	Subtract integers up to 10 million			
	Subtract decimals with up to 3 decimal places			
	Order of operations			
	Negative numbers			
	Subtract fractions			

Have a deep understanding of number to 10, including the composition of each Reception number. Subitise (recognise quantities without counting) up to 5 Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (and some subtraction facts) and some number bonds to 10, including double facts. **Progression of skills Key representations** Conceptually subitise to 5 What do you see? How do you see it? Notice the parts that make up the whole. 1 less 1 less than ... is ... Continue to link to stories, songs and rhymes. Notice the composition of How many...? How many ways can you make ...? numbers within 10 How many...? How many altogether? Link to stories, songs and rhymes.

Year 1	 Read, write and interpret mathematical statements involving subtraction (–) and equals (=) signs. Represent and use number bonds and related subtraction facts within 20 Subtract one-digit and two-digit numbers to 20, including zero. Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 =				
Progression of skills	Key representations				
Find a part Link to number bonds and known facts. E.g. 2 + 4 = 6 so if 6 is the whole and 4 is a part, the other part must be 2	There are in total are How many are not ?	is the whole is a part is a part.	subtract is equal to is equal to $ 6-2=4$ $6-4=2$ $4=6-2$ $2=6-4$		
Take away A quantity is decreased.	First Then Now	I start at I jump back I land on 1 2 3 4 5 6 7 8 9 10	minus is equal to is equal to $ 6-2=4$ $6-4=2$ $4=6-2$ $2=6-4$		

Progression of skills	Key representations		
Bonds within 10 Focus on subtraction facts. Encourage children to	is made of and and make	can be partitioned into and	minus is equal to $6 - 0 = 6$ $6 - 1 = 5$ $6 - 2 = 4$ $6 - 3 = 3$
notice patterns.			6 - 4 = 2 6 - 5 = 1 6 - 6 = 0
Related facts within 20	I know that minus = so minus =	less than is so less than is	What patterns do you notice?
Make links to known facts.		0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20	
Missing numbers	How many do you need to subtract to make?	If is the whole and is a part, the other part must	minus is equal to
Make links to known facts.		be 6 2 ?	6 - \[= 2 \] 2 = 6 - \[\]
		2	0 1 2 3 4 5 6 7 8 9 10

Progression of skills	Key representations	
Subtract multiples of 10	\dots ones $-\dots$ ones $=\dots$ ones so \dots tens $-\dots$ tens $=\dots$ tens	What is the same? What is different?
Make links to known facts within ten.	5-2=3 $50-20=30$	2 20 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 70 80 90 100 2 7
Subtract 10s from any number	tens — tens = tens tens and ones =	To subtract I need to subtract 10 times. I know that minus = so minus =
Make links to known facts.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Progression of skills	Key representations		
Subtract two 2-digit numbers (not across a ten)	ones – ones = ones tens – tens = tens	B B B B	= 2 tens
Subtract two 2-digit numbers (across a ten) Begin to exchange 1 ten for 10 ones.	43 T T T T T T T T T T T T T T T T T T T	ecause I do not have enough or T O	T 0
Missing numbers Solve missing number problems and use the inverse to check.	How many do you need to subtract to make? $10 - \square = 6$ $6 + \square = 10$	If is a whole and is a part, then is the other part. $7-3=$ 3 3	can be partitioned into and $18 - \boxed{} = 12 + 2$

Year 3

- Subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds.
- Subtract numbers with up to three digits, using formal written methods.
- Subtract fractions with the same denominator within 1 whole.

Progression of skills

Key representations

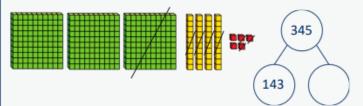
Subtract 1s, 10s and 100s from a 3-digit number

Emphasis on mental strategies including number bonds and related facts. Prompt children to notice which digit changes.

The ones/tens/hundreds column will decrease by ...

Hundreds	Tens	Ones
		::

$$444 - 2 =$$
 $444 - 20 =$
 $444 - 200 =$


$$777 - 4 =$$
 $777 - 40 =$
 $777 - 400 =$

What patterns do you notice?

Subtract two numbers (no exchange)

Mental strategies and introduction of formal written method.

- \dots ones $-\dots$ ones $=\dots$ ones
- ... tens ... tens = ... tens
- ... hundreds ... hundreds = ... hundreds

769		
147		

Hundreds	Tens	Ones
0000	⊗⊗ ⊗⊗⊗	0000 0000 0000

Progression of skills Key representations Subtract two numbers I need to subtract ... ones. I do/do not need to make an exchange. across a 10 or 100 I need to subtract ... tens. I do/do not need to make an exchange. I can exchange 1 ... for 10 ... Hundreds 00 00 Formal written method 00 2g 15g 15 involving up to 2 exchanges 72 1 7 8 45 including 3-digit subtract 1 8 7 2-digit numbers. 43 2 2 Hundreds - 4 5 7 Complements to 100 100 minus ... is equal to ... I subtract ... tens, then I subtract ... ones. Focus on subtraction facts. 100 100 - 38 = 62Encourage children to 100 - 62 = 38notice patterns. 62 = 100 - 3838

100

38

452

-30

-8

62 70

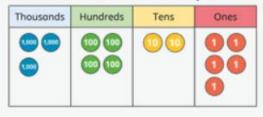
4 19 2

38 = 100 - 62

100

Progression of skills	Key representations
Subtract fractions with the same denominator within 1 whole	When subtracting fractions with the same denominator, I only subtract the numerator fifths $-$ fifths $=$ fifths $\frac{5}{5} - \frac{1}{5}$
Make links with known facts.	$\frac{4}{5} - \frac{1}{5}$
	$\frac{3}{5} - \frac{1}{5}$

Year 4


- · Subtract numbers with up to 4 digits using a formal written method.
- Solve simple measure and money problems involving fractions and decimals to 2 decimal places.
- Subtract fractions with the same denominator.

Progression of skills

Key representations

Subtract 1s, 10s, 100s and 1,000s from a 4-digit number

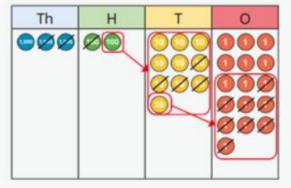
Emphasis on mental strategies including number bonds and related facts. Prompt children to notice which digit changes. The ones/tens/hundreds/thousands column will decrease by ...

$$3,425 - 2 = 3,425 - 200 = 3,425 - 2,000 =$$

What patterns do you notice?

$$4,356 - 3 =$$
 $4,356 - 30 =$
 $4,356 - 300 =$
 $4,356 - 3,000 =$
 $4,433 -$

$$\begin{vmatrix} 1,433 - \end{vmatrix} = 4,033 \\ \begin{vmatrix} 1,433 - \end{vmatrix} = 4,403 \end{vmatrix}$$


=4,430

Subtract up to two 4-digit numbers

Formal written method with up to 3 exchanges. Encourage children to estimate and use inverse operations to check answers to calculations.

I need to subtract... ones/tens/hundreds. I do/do not need to make an exchange.

I can exchange 1... for 10...

			Т	0
	3	12	⁹ /Ø	16
-	2	1	4	8
	1	0	5	8

Progression of skills	Key representations	
Subtract decimal numbers in the context of money Emphasis here is on	I can partition £ into £ and 100p $f f = f$ 100pp =p	£3.26 can be partitioned into £3 + 20p + 6p
partitioning and use of number lines rather than formal written calculations.	£5 - £3.26 £4 - £3 = £1 100p - 26p = 74p £5 - £3.26 = £1.74	- 6p - 20p - £3 £1.74 £1.80 £2 £5
Subtract fractions and mixed numbers with the same denominator Include subtracting fractions from wholes.	When subtracting fractions with the same de I only subtract the numerator tenths — tenths	nominator, 2 5 6
TIOTH WHOLES.	$\frac{16}{10} - \frac{5}{10}$ $\frac{16}{10} - \frac{9}{10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Year 5 Subtract whole numbers with more than 4 digits. Subtract numbers mentally with increasingly large numbers. Subtract decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 Subtract fractions with the same denominator, and denominators that are multiples of the same number. **Progression of skills Key representations** Subtract whole numbers I can exchange 1 ... for 10 ... with more than 4 digits Encourage children to 5 4 3 11 5 13 4 estimate and use inverse 3 2 7 4 2 0 8 5 8 operations to check answers to calculations. 0 8 Subtract using mental To subtract ..., I can subtract ... then add ... TTh Th strategies 6,558 Subtract 1s, 10s, 100s etc 99 -100from any number. - 99 48,650 - 300 =Use number bonds and 48,650 - 30,000 =related facts. 6,558 48,650 - 30 =6,458 6,459

Progression of skills

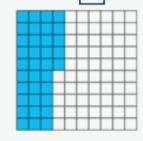
Key representations

Subtract decimals with up to 2 decimal places

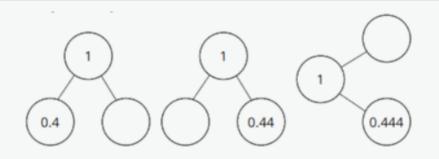
Progress from the same number of decimal places to a different number of decimal places and from no exchange to exchange.

	2 -	³/	12	
-	1	1	7	
	1	2	5	


24.4			
3.12 ?			



Complements to 1


Encourage children to make links with bonds to 10 and complements to 100 and 1,000 when finding a missing part or subtracting from 1

=1

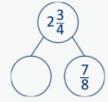
	10		100
3	?	35	?
	1		1
0.3	?	0.35	?

$$10 - 4 = 6$$
 $1 - 0.4 = 0.6$

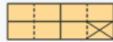
$$1 - 0.4 = 0.6$$

$$100 - 44 = 56$$
 $1 - 0.44 = 0.56$


$$1 - 0.44 = 0.56$$


$$1,000 - 444 = 556$$
 $1 - 0.444 = 0.556$

$$1 - 0.444 = 0.556$$

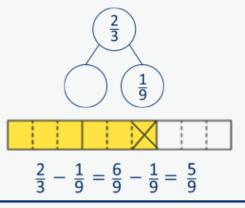

Progression of skills Key representations Subtract fractions with The denominator has been multiplied by ..., so the numerator needs to be multiplied by... denominators that are a for the fractions to be equivalent. multiple of one another Convert fractions to the same denominator before subtracting. Progress from $\frac{1}{3} - \frac{1}{15} = \frac{5}{15} - \frac{1}{15} = \frac{4}{15}$ subtracting fractions within 1 whole to subtracting from

a mixed number.

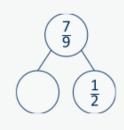
Year 6 Subtract larger numbers, using the formal written methods of columnar subtraction. Use their knowledge of the order of operations to carry out calculations involving the 4 operations. Calculate intervals across zero. Subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions. **Progression of skills Key representations** Subtract integers up to 10 million ¹4 | ⁵6 | ¹2 2 Encourage children to 4 8 5 8 3 2 1 estimate and use inverse 3 6 0 operations to check answers 4,604 5 5 5 to calculations. 2,354 750 Subtract decimals with up I do/do not need to make an exchange because ... to 3 decimal places Thth Hth Progress from the same number of decimal and whole number places to a different number of decimal 1 3 4 0 6 4 and whole number places. 3 0 9 7 5 5 0

Progression of skills	Key representations	
Order of operations	has greater priority than , so the first part of the calculation I need to do is	
Children learn the order of priority for operations in a calculation. Calculations in brackets should be done first. Multiplication and division should be performed before addition and subtraction.	powers $\begin{array}{c} \times \text{ and } + \\ + \text{ and } - \\ \end{array}$ $8 - 2 \times 3 = 2$ $(8 - 2) \times 3 = 18$	× × = 4
Negative numbers Children subtract from positive and negative numbers and calculate intervals across 0	minus is equal to $-1 - 4 = -5$ $-5 - 4 - 3 - 2 - 1 0 1 2 3 4 5$ The difference between -5 and -5 $1 - 4 = -3$ $1 - 4 = -3$	4 5 -1 is 4

The difference between 5 and -5 is 10

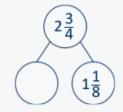

Progression of skills
Subtract fractions
Convert fractions to
same denominator b
subtracting. Progress
fractions where one
denominator is a mu
the other, to any frac
and then subtracting
mixed number.

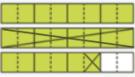
Key representations


fractions

ractions to the ominator before ng. Progress from where one ator is a multiple of to any fractions subtracting from a mixed number.

The denominator has been multiplied by ..., so the numerator needs to be multiplied by...




The lowest common multiple of ... and ... is ...

$$\frac{7}{9} - \frac{1}{2} = \frac{14}{18} - \frac{9}{18} = \frac{5}{18}$$

... is made up of ... wholes and ...

$$2\frac{3}{4} - 1\frac{1}{8} = 1\frac{5}{8}$$

Progression of Skills – Multiplication

Reception	Double to 10			
	Make equal groups			
Year 1	Count in 2s, 5s and 10s			
	Add equal groups			
	Make arrays			
	Make doubles			

Year 2	Link repeated addition and multiplication			
	Use arrays			
	Double			
	The 2 times-table			
	The 10 times-table			
	The 5 times-table			
	Missing numbers			
Year 3	The 3 times-table			
	The 4 times-table			
	The 8 times-table			
	Related facts			
	Multiply a 2-digit number by a 1-digit number - no exchange			
	 Multiply a 2-digit number by a 1-digit number - with exchange 			
	Scaling			
	Correspondence problems			

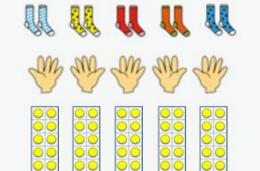
Year 4 Times-table facts to 12×12 Multiply by 1 and 0 Multiply 3 numbers Factor pairs Multiply by 10 and 100 Related facts Mental strategies Multiply a 2 or 3-digit number by a 1-digit number Scaling Correspondence problems

Year 5 Multiples and factors Square and cube numbers Multiply numbers up to 4 digits by a 1-digit number Multiply numbers up to 4 digits by a 2-digit number Multiply by 10, 100 and 1,000 Mental strategies Multiply fractions by a whole number Multiply mixed numbers by a whole number Find the whole

Year 6	 Multiply numbers up to 4 digits by a 2-digit number Multiply by 10, 100 and 1,000
	Order of operations
	 Multiply decimals by integers Multiply fractions by fractions
	Find the whole
	Calculations involving ratio

Have a deep understanding of number to 10, including the composition of each Reception number. Subitise (recognise quantities without counting) up to 5 Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 and some number bonds to 10, including double facts. Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally. **Progression of skills Key representations** Double to 10 Double ... is is double ... Prompt children to notice that double means twice as many and to notice that there are two equal groups. Make equal groups There are ... groups of ... There are ... altogether. Provide opportunities to make equal groups when tidying up or during snack time. Encourage children to check that each group has the same amount.

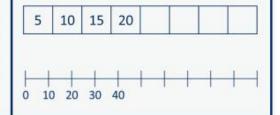
Year 1


- · Count in multiples of twos, fives and tens.
- Solve one-step problems involving multiplication, using concrete objects, pictorial representations and arrays with the support of the teacher.

Progression of skills

Key representations

Count in 2s, 5s and 10s


Begin by counting objects that naturally come in 2s, 5s and 10s, for example pairs of socks or fingers. There are ... equal groups of ... There are ... altogether.

Continue to colour in ...s What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Complete the number track/number line by counting in ...s.

Add equal groups (repeated addition)

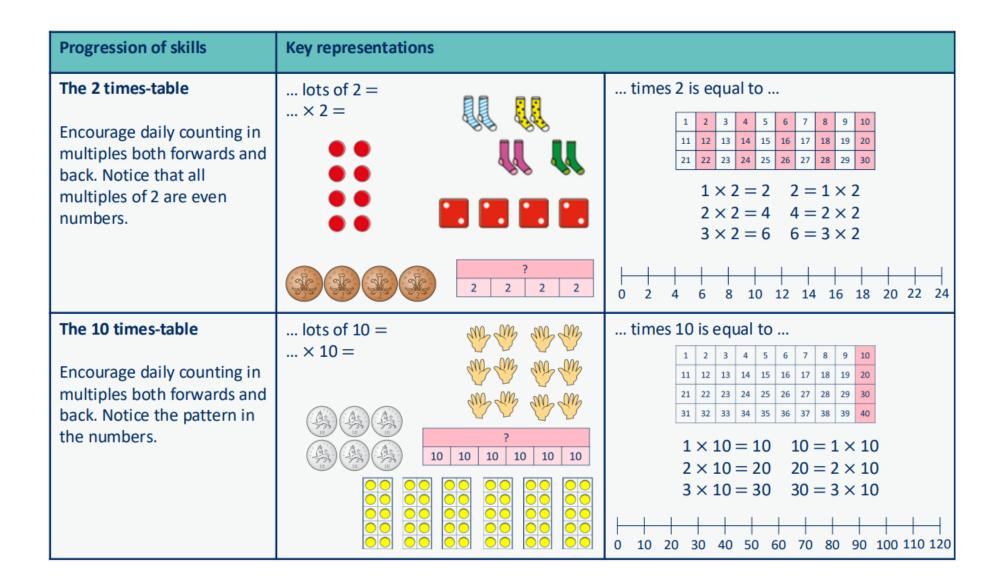
Children should be able to write a repeated addition to represent equal groups and to draw pictures or use objects to represent a repeated addition.

There are ... groups of ...

There are ... altogether.

$$10 + 10 + 10 = 30$$

$$5+5+5+5=20$$


What is the same? What is different?

$$2+2+2=$$
 $5+5+5=$
 $10+10+10=$

Use objects or a drawing to represent the equal groups and find how many in total.

Progression of skills	Key representations
Make arrays Children use their knowledge of adding equal groups to arrange objects in columns and rows.	There are rows of There are altogether. There are columns of There are altogether.
Make doubles Children understand that doubles are two equal groups. Children may begin to explore doubles beyond 20 using base 10	Double is + =

Year 2	 Recall and use multiplication facts for the 2, 5 and 10 multiplication tables. Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (×) and equals (=) signs. Show that multiplication of two numbers can be done in any order (commutative). 		
Progression of skills	Key representations		
Link repeated addition and multiplication	There are equal groups with in each group there are altogether.	p. 6 3+3=6 2×3=6	
Encourage children to make the link between repeated addition and multiplication.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Use arrays	There are rows with in each row.	I can see × and ×	
Encourage children to see that multiplication is commutative.	There are columns with in each column. 3 lots of $5 = 15$ 5 + 5 + 5 = 15 5 lots of $3 = 15$ 3 + 3 + 3 + 3 + 3 =	$3 \times 5 = 15$ $5 \times 3 = 15$ $3 \times 5 = 5 \times 3$	
Double	Double is	Double is so double is	
Encourage children to make links with related facts.	Double $4 = 4 + 4$ Double 4 is 8	Double 4 is 8 Double 40 is 80	

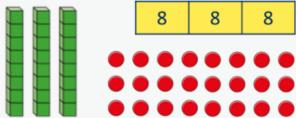
Progression of skills Key representations The 5 times-table ... times 5 is equal to ... \dots lots of 5 = $... \times 5 =$ Encourage daily counting in 12 13 14 15 16 17 18 multiples both forwards and 23 24 25 26 27 28 29 30 back. Notice the pattern in 31 32 33 34 35 36 37 38 39 the numbers. $1 \times 5 = 5$ $5 = 1 \times 5$ $2 \times 5 = 10$ $10 = 2 \times 5$ $3 \times 5 = 15$ $15 = 3 \times 5$ 5 5 5 5 5 50 55 60 20 25 30 35 40 45 Missing numbers ... is equal to ... groups of times ... is equal to ... Make links to known facts. 18 socks, how many pairs? $\times 2 = 18$ $18 = 2 \times$ 16 18 14

Year 3	numbers, using mental and progressing Solve problems, including missing num 	ements for multiplication using the ncluding for two-digit numbers times one-digit
Progression of skills	Key representations	
The 3 times-table	groups of 3 =	times 3 is equal to
Encourage daily counting in	× 3 = 3, times =	1 2 3 4 5 6 7 8 9 10
Encourage daily counting in multiples both forwards and back.	3 × =	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
back.		$4 \times 3 = 12$ $12 = 4 \times 3$
	3 3 3	0 3 6 9 12 15 18 21 24 27 30 33 36
The 4 times-table	groups of 4 =	times 4 is equal to
Face and delice and the second	× 4 =	1 2 3 4 5 6 7 8 9 10
Encourage daily counting in multiples both forwards and	4, times = 4 × =	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
back. Encourage children to notice links between the 2		$3 \times 4 = 12$ $12 = 3 \times 4$
and 4 times-tables.	4 4 4	0 4 8 12 16 20 24 28 32 36 40 44 48

exchange

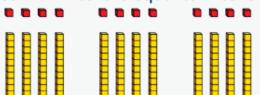
Progression of skills

Key representations


The 8 times-table

Encourage daily counting in multiples both forwards and back. Encourage children to notice links between the 2. 4 and 8 times-tables.

... times 8 is equal to ...


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30

Related facts

Use knowledge of multiplying by 10 to scale times-table facts.

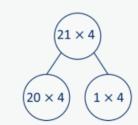
 $... \times ...$ ones is equal to ... ones

so ... \times ... tens is equal to ... tens.

$$3 \times 4 = 12$$

 $3 \times 40 = 120$

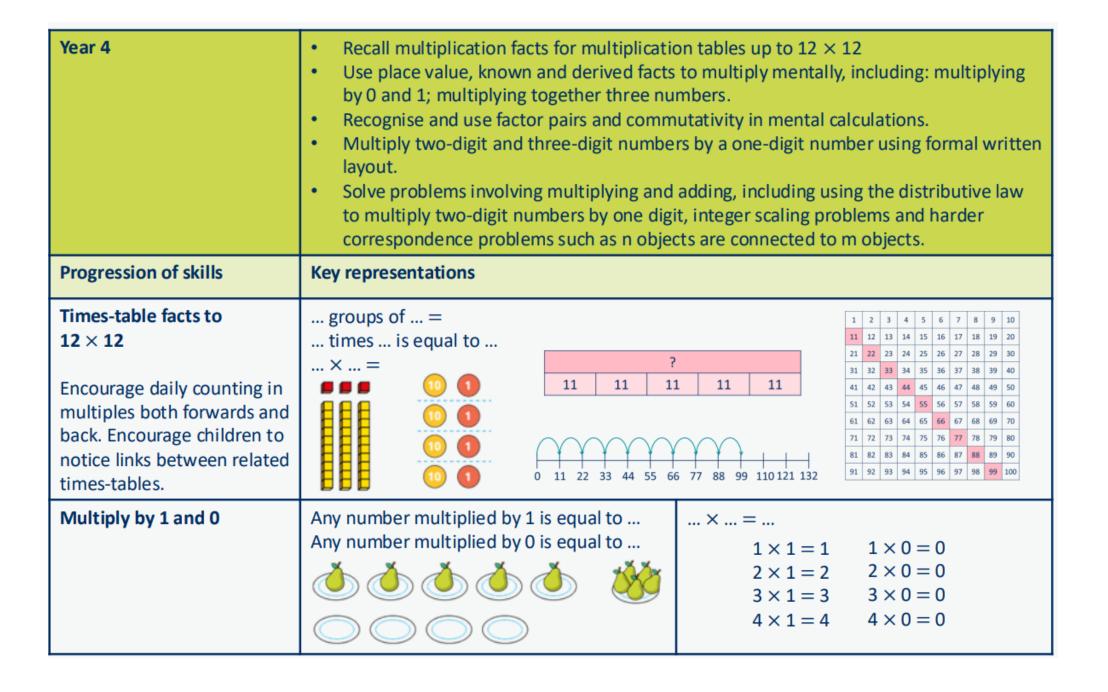
Multiply a 2-digit number by a 1-digit number - no


Children apply their understanding of partitioning to represent and solve calculations using the expanded method.

- ... tens multiplied by ... is equal to ... tens.
- ...ones multiplied by ... is equal to ... ones.

Tens	Ones
	••
	••

$$30 \times 2 = 60$$
$$2 \times 2 = 4$$


$$32 \times 2 = 64$$

Tens	Ones
000	0
000	0
000	0
000	0

Progression of skills	Key representations	
Multiply a 2-digit number by a 1-digit number - with exchange Children apply their understanding of partitioning to represent and solve calculations using the expanded method.	tens multiplied by is equal to tens ones multiplied by is equal to ones.	45 × 3 Tens Ones 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Scaling Children focus on multiplication as scaling (times the size) as opposed to repeated addition.	There are times as many as 2 \(\triangle	is times the size of is times the length/height of 4 cm 16 cm Miss Smith is twice the height of Jo.

Progression of skills	Key representations			
Correspondence problems (How many ways?)	For every, there are possible There are × possibilities altogether.			
		hats	scarves	
Encourage children to work systematically to find all the different possible combinations.		blue orange purple		For every hat, there are two possible scarves. 3 × 2 = 6 There are 6 possibilities altogether.

Progression of skills	Key representations	
Multiply 3 numbers Children use their understanding of commutativity to multiply more efficiently.	To work out \times , I can first calculate $4 \times 2 \times 3 = 8 \times 3 = 2$ $2 \times 3 \times 4 = 6 \times 4 = 2$ $3 \times 4 \times 2 = 12 \times 2 = 2$	4
Factor pairs Children explore equivalent calculations using different factors pairs.	$12 = \times, so \times 12 = \times \times$ $8 \times 6 = 8 \times 3 \times 2$ $8 \times 6 = 24 \times 2$	$6 \times 8 = 6 \times 4 \times 2$ $6 \times 8 = 24 \times 2$
Multiply by 10 and 100 Some children may overgeneralise that multiplying by 10 or 100 always results in adding zeros. This will cause issues later when multiplying decimals.	When I multiply by 10, the digits move place value column to the left is 10 times the size of H T O 35 \times 10 = 350	When I multiply by 100, the digits move place value columns to the left is 100 times the size of The Heat Tool 14 \times 100 = 1,400

Progression of skills	Key representations		
Related facts Use knowledge of multiplying by 10 and 100 to scale times-table facts.	× ones is equal to ones so × tens is equal to tens and × hundreds is equal to hundreds.		
	$3 \times 7 = 21$ $7 \times 3 = 21$ $7 \times 3 = 21$ $3 \times 70 = 210$ $7 \times 30 = 210$		
Mental strategies Partition 2 or 3-digit numbers to multiply using informal methods.	tens multiplied by is equal to tens ones multiplied by is equal to ones. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Progression of skills	Key representations				
Multiply a 2 or 3-digit number by a 1-digit number	To multiply a 2-digit number by, I multiply the ones by and the tens by To multiply a 3-digit number by, I multiply the ones by, the tens by and the hundreds by				
The short multiplication method is introduced for the first time, initially in an expanded form.	T 0 H T 0 10 10 10 10 10 10 10 10 10 10 10 10 1				
Scaling	is times the size of				
Children focus on multiplication as scaling	7 7 7 7 7 7 7	6	6 6 6	6 6 6	
(times the size).	A computer mouse costs £7 A red ribbon is 6 cm.				
	A keyboard costs 6 times as much.	A yel	low ribbon is	7 times as lo	ong.
Correspondence problems	For every, there are possibilities.				
	There are × possibilities altogether.		Deep pan	Italian	Thin
Encourage children to use		Cheese	C DP	СІ	C Th
tables to show all the	A pizza company offers a choice	Mushroom	M DP	МІ	M Th
different possible	of 5 toppings and 3 bases.	Vegetable	V DP	VI	V Th
combinations.		Chicken	C DP	CI	C Th
	$5 \times 3 = 15$	Tuna	T DP	TI	T Th

Year 5	 Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers Recognise and use square numbers and cube numbers, and the notation for squared (²) and cubed (³) Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. Multiply numbers mentally drawing upon known facts. Multiply whole numbers and those involving decimals by 10, 100 and 1000 Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. 			
Progression of skills	Key representations			
Multiples and factors Encourage children to notice patterns and make links with known facts.	is a multiple of because × = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	is a factor of because × = 1 × 8 2 × 4 1, 2, 4 and 8 are factors of 8	The common factors of and are Factors of 20 Factors of 12 5 1 20 4 12	
Square and cube numbers	squared means \times 1 × 1 2 × 2 3 × 3 1 ² = 1 2 ² = 4 3 ² = 9	cubed means 4×4 $4^2 = 16$ $1 \times 1 \times 1$ 2×3 $1^3 = 1$ $2^3 = 3$	2 × 2 3 × 3 × 3	

Progression of skills	Key representations			
Multiply numbers up to 4 digits by a 1-digit number This builds on the short multiplication method introduced in Y4 To multiply a 4-digit number by, I multiply a 4-digi		tiply the ones by , the tens by , the hundreds Th H T O 1 1 1 5 2		
Multiply numbers up to 4 digits by a 2-digit number Numbers are first partitioned using an area model then long multiplication is introduced for the first time.	I can partition into and $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	First, I multiply by the Then I multiply by the X 10 3 3 2		

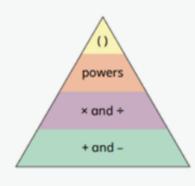
Progression of skills	Key representations		
Multiply by 10, 100 and 1,000	To multiply by 10/100/1,000, I move all the digits places to the left is 10/100/1,000 times the size of		
Some children may over- generalise that multiplying by a power of 10 always results in adding zeros. This will cause issues later when multiplying decimals.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Mental strategies Children continue to use efficient mental strategies such as partitioning and knowledge of factor pairs and related facts to multiply.	The most efficient strategy to calculate \times is To calculate \times 12, I can do \times \times For example: 121 \times 12 I could calculate 100 \times 12 plus 20 \times 12 plus 1 \times 12 I could calculate 121 \times 10 plus 121 \times 2 I could calculate 121 \times 6 \times 2 I could calculate 121 \times 4 \times 3		

Progression of skills	Key representations		
Multiply fractions by a whole number	To multiply a fraction by an integer, I multiply the numerator by the integer and the denominator remains the same.		
Make links with repeated addition. E.g. $\frac{1}{5} \times 4 = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$	$\frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7}$ $\frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7}$ $\frac{1}{7} \times 5 = \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{5}{7}$ $\frac{2}{7} \times 3 = \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{6}{7}$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Multiply mixed numbers by a whole number	I can partition into and 2 $\frac{2}{3} \times 3$ $2 \times 3 = 6$ $\frac{2}{3} \times 3 = \frac{6}{3} = 2$ $2 \times 3 = 6 + 2 = 8$		

Progression of skills	Key representations	
Find the whole	If $\frac{1}{\Box}$ is, then the whole is \times	If \Box is, then $\frac{1}{\Box}$ is and the whole is \times
Children multiply to find the whole from a given part.	$\frac{1}{5}$ of = 6	$\frac{4}{7}$ of = 24
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$7 \times 6 = 42$ $\frac{4}{7} \text{ of } 42 = 24$

Year 6	 Identify common factors and common multiples. Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Multiply numbers by 10, 100 and 1,000 Multiply one-digit numbers with up to two decimal places by whole numbers. Use their knowledge of the order of operations to carry out calculations involving the 4 operations. Multiply simple pairs of proper fractions, writing the answer in its simplest form. Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. Solve problems involving the calculation of percentages. 				
Progression of skills	Key representations				
Multiply numbers up to 4 digits by a 2-digit number	To multiply by a 2-digit number, first multiply by the ones, then multiply by the tens and then find the total. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Multiply by 10, 100 and	To multiply by 10/100/1,000, I move all the digits places to the left.				
1,000 Some children may overgeneralise that multiplying by a power of 10 always results in adding zeros.	is $10/100/1,000$ times the size of M HTh TTh Th H T 0 234 × 10 = 2,340 234 × 100 = 23,400 234 × 1,000 = 234,000 0.234 × 1,000 = 234				

-


Progression of skills integers This is the first time children or 1,000

Key representations

Order of operations

Calculations in brackets should be done first. Multiplication and division should be performed before addition and subtraction.

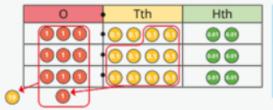
... has greater priority than ..., so the first part of the calculation I need to do is ...

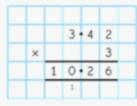
$$3 + 4^2 = 19$$

Multiply decimals by

multiply decimals by numbers other than 10, 100 Encourage them to make links with known facts and whole number multiplication.

I know that $... \times ... = ...$ so I also know that $... \times ... = ...$




$$6 \times 2 = 12$$

$$6 \times 0.2 = 1.2$$

I need to exchange 10 ... for 1 ...

Н	T	0	0	Tth	Hth
• •					
		000			000

$$213 \times 4 = 852$$

$$2.13 \times 4 = 8.52$$

Progression of skills	Key representations
Multiply fractions by fractions	When multiplying a pair of fractions, I need to multiply the numerator and multiply the denominator.
Encourage children to give answers in their simplest form.	
	$\frac{1}{3} \times \frac{1}{5} = \frac{1}{15}$ $\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$ $\frac{2}{3} \times \frac{3}{5} = \frac{6}{15} = \frac{2}{5}$
Find the whole	If $\frac{1}{\Box}$ is, then the whole is \times If $\frac{1}{\Box}$ is, then $\frac{1}{\Box}$ is and the whole is \times
Children multiply to find the whole from a given part.	$\frac{1}{3}$ of = 18 ? $18 \times 3 = 54$ $\frac{1}{9}$ of = 48 $\frac{1}{9} = 48 \div 4 = 12$ $9 \times 12 = 108$ $\frac{4}{9}$ of $108 = 48$

Progression of skills

Key representations

Calculate percentages

Children first learn how to find 1%, 10%, 20%, 25% and 50% before using multiples of these amounts to find any percentage.

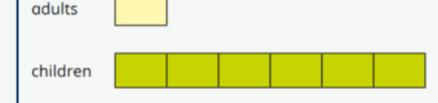
There are ... lots of ... % in 100% To find ... %, I need to divide by ...

100%				
50%		50%		
25% 25%		25%	25%	

50% of ... = ...
$$\div$$
 2 25% of ... = ... \div 4

... % is made up of ... %, and ... %

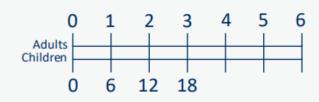
100%										
1	.0%	10%	10%	10%	10%	10%	10%	10%	10%	10%


To find 30%, I can find 10% and then multiply it by 3 To find 23%, I can use $10\% \times 2$ and $1\% \times 3$ To find 99%, I can find 1%, then subtract from 100%

Calculations involving ratio

Encourage children to see the multiplicative relationship between ratios. They will need to multiply or divide each value by the same number to keep the ratio equivalent. Double number lines and ratio tables help children to see both horizontal and vertical multiplicative relationships.

For every ..., there are ...


For every 1 adult on a school trip, there are 6 children.

Adults Children 6 2 12 18 \times 6

 $\times 6$

The ratio of adults to children is 1:6

Progression of skills – Division

Reception	• Sharing
	Grouping
Year 1	Make equal groups – grouping
	Make equal groups – sharing
	Find a half
	Find a quarter

Year 2	Divide by 2
	Divide by 10
	Divide by 5
	Missing numbers
	Unit fractions
	Non-unit fractions
Year 3	Divide by 3
	Divide by 4
	Divide by 8
	Related facts
	Divide a 2-digit number by a 1-digit number - no exchange
	Divide a 2-digit number by a 1-digit number - with remainders
	Unit fractions of a set of objects
	Non-unit fractions of a set of objects

Year 4	Division facts to 12 × 12
	Divide a number by 1 and itself
	Related facts
	Divide a 2 or 3-digit number by a 1-digit number
	Divide by 10 and 100
Year 5	Mental strategies
	Divide numbers up to 4 digits by a 1-digit number
	Divide by 10, 100 and 1,000
	Fraction of an amount

Year 6 Short division Mental strategies Long division Order of operations Divide by 10, 100 and 1,000 Divide decimals by integers Decimal and fraction equivalents Divide a fraction by an integer Fraction of an amount Calculate percentages Calculations involving ratio

Reception

- Have a deep understanding of number to 10, including the composition of each number.
- Subitise (recognise quantities without counting) up to 5
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 and some number bonds to 10, including double facts.
- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

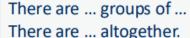
Progression of skills

Key representations

Sharing

Provide practical activities such as sharing items during snack time. Encourage children to check whether items have been shared fairly (equally).

They are shared equally between ... groups.



Grouping

Provide opportunities to make equal groups when tidying up or during snack time. Encourage children to check that each group has the same amount.

Year 1 Solve simple one-step problems involving division, using concrete objects, pictorial representations and arrays with the support of the teacher. Recognise, find and name a half as one of two equal parts of a quantity. Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity. **Progression of skills Key representations** Make equal groups -There are ... altogether. grouping How many groups of ... can you make? Encourage children to physically move objects into equal groups. They can also circle equal groups when using pictures.

Circle groups of 2 There are ... groups of 2

Take ... cubes. Make equal groups.

There are ... groups of ...

Make equal groups sharing

Encourage children to check that the objects have been shared fairly and each group is the same.

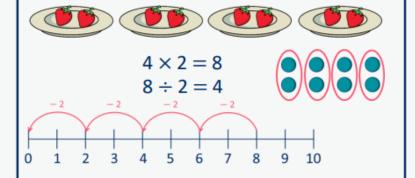
... have been shared equally between... There are ... on/in each ...

Take ... cubes. Share them between ...

12 shared between ... is ...

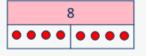
Progression of skills	Key representations		
Start with practical opportunities to share a quantity into 2 groups. Progress to circling half of the objects in a picture and then to finding the whole from a given half.	To find half, I need to share into 2 equal groups. There are in each group.	Half of is	If is half, what is the whole? 4 is half of
Start with practical opportunities to share a quantity into 4 groups. Progress to using pictures or bar models to find a quarter and then to finding the whole from a given quarter.	To find a quarter, I need to share into 4 equal groups. There are in each group.	A quarter of is	If is one quarter, what is the whole?

	١	ľе	ar	2
--	---	----	----	---


- Recall and use division facts for the 2, 5 and 10 multiplication tables.
- Calculate mathematical statements for division within the multiplication tables and write them using the division (÷) and equals (=) signs.
- Recognise, find, name and write fractions $\frac{1}{3}$, $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ of a quantity.

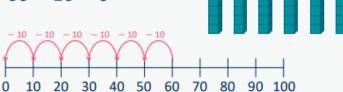
Key representations

Divide by 2


Encourage children to compare the grouping and sharing structures of division and to make links with times-table facts and halving.

There are ... equal groups of 2 ... \div 2 = ...

... shared equally between 2 is ... Half of ... is ...


8			
4	4		

Divide by 10

Encourage children to compare the grouping and sharing structures of division and to make links with times-table facts.

There are ... equal groups of 10

$$... \div 10 = ...$$

 $6 \times 10 = 60$
 $60 \div 10 = 6$

... shared equally between 10 is ...

...
$$\div$$
 10 = ...

$$6 \times 10 = 60$$

 $60 \div 10 = 6$

60									
6	6	6	6	6	6	6	6	6	6

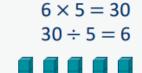
Key representations

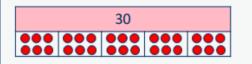
Divide by 5

Encourage children to compare the grouping and sharing structures of division and to make links with times-table facts.

There are ... equal groups of 5

$$... \div 5 = ...$$


$$6 \times 5 = 30$$
$$30 \div 5 = 6$$



... shared equally between 5 is ...

...
$$\div$$
 5 = ...

Missing numbers

Bar models are useful to show the link between multiplication and division. ... divided by 2/5/10 is equal to ...

10

10

10

?						
10	10	10	10	10		

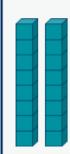
10

10

0	10	10	10	10

 $\div 5 = 10$

Progression of skills	Key representations				
Unit fractions In Y2 the focus is on finding	The objects have been shared fairly into groups. $\frac{1}{\Box}$ of is	There are equal parts. There is part circled. $\frac{1}{\Box}$ is circled.			
$\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{3}$ Bar models are useful to show the link between division and finding a fraction.					
Non-unit fractions In Y2 the focus is on finding $\frac{2}{4}$ and $\frac{3}{4}$	The objects have been shared fairly into groups.	There are equal parts. There are parts circled. is circled.			
Prompt children to notice that $\frac{2}{4}$ is equivalent to $\frac{1}{2}$					


Year 3 Recall and use division facts for the 3, 4 and 8 multiplication tables. Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators. **Progression of skills Key representations** There are ... groups of 3 in ... Divide by 3 ... has been shared equally into 3 equal groups. $... \div 3 =$ $... \div 3 =$ Encourage children to $2 \times 3 = 6$ $2 \times 3 = 6$ compare the grouping and $6 \div 3 = 2$ $6 \div 3 = 2$ sharing structures of division and to make links with times-table facts. 2 There are ... groups of 4 in ... Divide by 4 ... has been shared equally into 4 equal groups. ... $\div 4 =$... $\div 4 =$ $2 \times 4 = 8$ Encourage children to $8 \div 4 = 2$ compare the grouping and sharing structures of $2 \times 4 = 8$ division and to make links $8 \div 4 = 2$ with times-table facts.

Key representations

Divide by 8

Encourage children to compare the grouping and sharing structures of division and to make links with times-table facts.

There are ... groups of 8 in ...

$$2 \times 8 = 16$$

 $16 \div 8 = 2$

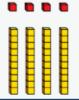
... has been shared equally into 8 equal groups.

...
$$\div$$
 8 =

	8							
•	•	• •	• •	• •	• •	• •	• •	• •

$$2 \times 8 = 16$$

 $16 \div 8 = 2$

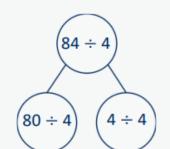

Related facts

Link to known times-table facts.

$$12 \div 3 = 4$$

 $120 \div 3 = 40$

Divide a 2-digit number by a 1-digit number - no exchange


Partition into tens and ones to divide and then recombine.

- ... tens divided by ... is equal to ... tens.
- ... ones divided by ... is equal to ... ones.

Tens	Ones
	••

$$60 \div 2 = 30$$

 $4 \div 2 = 2$

$$64 \div 2 = 32$$

Tens	Ones
000	0
000	0
000	0
000	0

Progression of skills Key representations Divide a 2-digit number by ... tens divided by ... is equal to ... tens. There are ... groups of ... a 1-digit number - with ... ones divided by ... is equal to ... ones. There are ... remaining. remainders $31 \div 4 = 7 \text{ r}$ Encourage children to partition numbers flexibly Tens 96 ÷ 4 Ones to help them to divide more efficiently. $94 \div 4 = 23 \text{ r}2$ $(16 \div 4)$ $(80 \div 4)$ Ones Tens 00 $80 \div 4 = 20$ 00 00 $16 \div 4 = 4$ 00 00 $96 \div 4 = 24$ 00 Unit fractions of a set of The whole is divided into ... equal parts. One ... of ... is ... objects Each part is $\frac{1}{\Box}$ of the whole. $\frac{1}{4}$ of 12 is 3 Bar models are useful to show the link between $\frac{1}{3}$ of 36 is 12 division and fractions, for example, dividing by 3 and finding a third. $\frac{1}{4}$ of 12 apples is 3 apples.

Ones

000

000

Progression of skills	Key representations	
Non-unit fractions of a set of objects	The whole is divided into equal parts. Each part is $\frac{1}{\Box}$ of the whole.	$\frac{1}{\Box}$ of is, so $\frac{\Box}{\Box}$ of is
Bar models are a useful representation and show the links with division and multiplication.	$\frac{3}{4}$ of 12 apples is 9 apples.	3/4 of 12 is 9 2/3 of 36 is 24 0 0 0 0 0 0 0 0 0

Year 4 Recall division facts for multiplication tables up to 12×12 Use place value, known and derived facts to divide mentally, including: dividing by 1 Find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths. **Progression of skills Key representations** ... has been shared equally into ... equal groups. Division facts to 12×12 There are ... groups of ... in ÷ ... = ... ÷ ... = Encourage children to compare the grouping and sharing structures of division and to make links with times-table facts. 12 $2 \times 6 = 12$ $2 \times 6 = 12$ $12 \div 6 = 2$ $12 \div 6 = 2$ Divide a number by 1 and When I divide a number by 1, the When I divide a number by itself, the answer is 1 number remains the same. itself 5 shared between 5 is 1 5 shared between 1 is 5 Children may try to divide a number by zero and it should be highlighted that There are **5** groups of 1 in 5 this is not possible. There is 1 group of 5 in

Progression of skills	Key representations				
Related facts Link to known times-table	÷ is equal to so tens ÷ is equal to tens and hundreds ÷ is equal to hundreds.				
facts.		$21 \div 7 = 3$ $21 \div 3 = 7$ $210 \div 7 = 30$ $210 \div 3 = 70$ $2,100 \div 7 = 300$ $2,100 \div 3 = 700$			
Divide a 2 or 3-digit number by a 1-digit number Progress from divisions with no exchange, to divisions with exchange and then	I can partition into tens and ones. $80 \div 4 = 20$ $4 \div 4 = 1$ $80 \div 4 = 21$	I cannot share the hundreds/tens equally, so I need to exchange 1 for 10 $300 \div 3 = 100$ $120 \div 3 = 40$ $15 \div 3 = 5$ $435 \div 3 = 145$			

Progression of skills	Key representations			
Divide by 10 and 100 Encourage children to notice that dividing by 100 is the same as dividing by 10 twice.	When I divide by 10, the digits move 1 place value column to the right is one-tenth the size of The state of the size of the s	When I divide by 100, the digits move 2 place value columns to the right is one-hundredth the size of The Hth The The The Hth The The The The Hth The The The The The The The The The Th		

Year 5	 Divide numbers mentally drawing upon known facts. Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. Divide whole numbers and those involving decimals by 10, 100 and 1,000 		
Progression of skills	Key representations		
Mental strategies	I can partition into and to help me to divide more easily. $436 \div 4$ $400 \div 4$ $36 \div 4$	I can show groups of on a number line.	To divide by, I can divide by and then divide the result by $436 \div 4 = 436 \div 2 \div 2$ $436 \div 2 = 218$ $218 \div 2 = 109$
Divide numbers up to 4 digits by a 1-digit number The short division method is introduced for the first time.	There are groups of hund I can exchange 1 for 10	reds/tens/ones/ in 2 0 5 r2 3 6 1 17	Th H T O

Key representations

Divide by 10, 100 and 1,000

Encourage children to notice that dividing by 100 is the same as dividing by 10 twice, and that dividing by 1,000 is the same as dividing by 10 three times.

To divide by 10/100/1,000, I move all the digits ... places to the right. ... is one-tenth/one-hundredth/one-thousandth the size of ...

Th	н	Т	0 (Tth	Hth
	•		,	•	
Th	Н	Т	0	Tth	Hth
		•		•	
Th	Н	Т	0 (Tth	Hth
Th	Н	Т	0 •	Tth	Hth
			•		

$$120 \div 10 = 12$$

$$120 \div 100 = 1.2$$

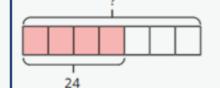
$$120 \div 1,000 = 0.12$$

Fraction of an amount

Bar models support children to understand that to find a fraction of an amount, we divide by the denominator and multiply by the numerator.

To find ⊨ of ... , I need to divide by ... and multiply by ...

$$\frac{3}{5}$$
 of 20 =


$$\frac{1}{4}$$
 of 84 =

$$\frac{3}{4}$$
 of 84 =

If $\frac{1}{\Box}$ is ..., then the whole is ... \times ...

$$\frac{1}{5}$$
 of ___ = 6

$$\frac{4}{7}$$
 of ___ = 24

Year 6	 Perform mental calculations, including with mixed operations and large numbers. Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Divide numbers by 10, 100 and 1,000 giving answers up to three decimal places. Use written division methods in cases where the answer has up to two decimal places. Associate a fraction with division and calculate decimal fraction equivalents. Divide proper fractions by whole numbers [for example, ¹/₃ ÷ 2 = ¹/₆] Solve problems involving the calculation of percentages. 	
Progression of skills	Key representations	
Short division Encourage children to interpret remainders in context, for example knowing that "4 remainder 1" could mean 4 complete boxes with 1 left over so 5 boxes will be needed.	There are groups of hundreds/tens/ones/ in I can exchange 1 for 10 There are groups of hundreds/tens/ones/ in The are groups of hundreds/tens/ones/ in hundreds/tens/	

Progression of skills	Key representations		
Mental strategies Include partitioning and	To divide by , I can first divide by and then divide the answer by $240 \div 60 = 240 \div 10 \div 6 \qquad \qquad 9,120 \div 15 = 9,120 \div 5 \div 3$		
number line strategies outlined in Y5 as well as division using factors.	$240 \longrightarrow \begin{array}{ c c c c c c } \hline 240 \longrightarrow \begin{array}{ c c c c } \hline & & & & & \\ \hline & & & & \\ \hline & 480 \div 24 = 480 \div 4 \div 6 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	9,120	
Long division	Method 1	Method 2	
The long division method is introduced for the first time. Two alternative methods are shown.	0 3 6 12 4 3 2 3 6 0 7 2 7 2 (12 × 6) 0 2 4 r 12 15 3 7 2 7 2 (15 × 20) (15 × 4)	0 3 6 12 4 3 2 3 6 7 2 7 2 1 1 7 0 9 r 9 13 1 4 2 6 1 3 0 1 2 6 1 1 7 9	
Order of operations Calculations in brackets should be done first, then powers. Multiplication and division should be performed before addition	has greater priority than, so the first part of		
and subtraction.	$+ and - (6+4) \div 2 =$	$5 6+4 \div 2 = 8$	

Key representations

Divide by 10, 100 and 1,000

Encourage children to notice that dividing by 100 is the same as dividing by 10 twice, and that dividing by 1,000 is the same as dividing by 10 three times.

To divide by ..., I move the digits ... places to the right.

$$312 \div 10 = 31.2$$

 $312 \div 100 = 3.12$
 $312 \div 1,000 = 0.312$

$$906 \div 10 = 90.6$$

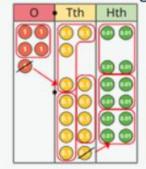
 $906 \div 100 = 9.06$

 $906 \div 1,000 = 0.906$

Divide decimals by integers

This is the first time children divide decimals by numbers other than 10, 100 or 1,000

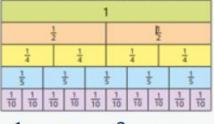
I know that ... ÷ ... = ..., so I also know that ... ÷ ... = ...

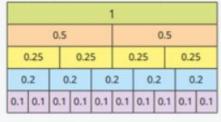


$$39 \div 3 = 13$$

$$3.9 \div 3 = 1.3$$

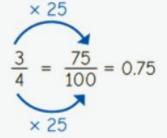
$$0.39 \div 3 = 0.13$$


I need to exchange 1 ... for 10 ...



Decimal and fraction equivalents

The fraction ... is equivalent to the decimal ...



$$\frac{1}{5} = 0.2$$
 $\frac{2}{5} = 0.4$

$$\frac{3}{5} = 0.6$$

$$\frac{\square}{\square}$$
 is equal to $\frac{\square}{100}$

Progression of skills	Key representations		
Divide a fraction by an integer	ones divided by 2 is ones so sevenths divided by 2 is sevenths.	I am dividing by, so I can split each part into equal parts.	\dots is equivalent to \dots so $\dots \div \dots = \dots \div \dots$
This is the first time children divide fractions by an integer.	$\frac{4}{7} \div 4 = \frac{1}{7}$ $\frac{4}{7} \div 2 = \frac{2}{7}$	$\frac{1}{3} \div 2 = \frac{1}{6}$	$\frac{2}{3} = \frac{4}{6}$ so $\frac{2}{3} \div 4 = \frac{4}{6} \div 4 = \frac{1}{6}$
Fraction of an amount Children divide and multiply	To find $\frac{1}{\Box}$ I divide by	If $\frac{1}{\Box}$ is equal to, then \Box are equal to	If is equal to, then the whole is equal to
to find fractions of an amount. Bar models can still be used to support understanding where needed.	$\frac{1}{2} \text{ of } 36 = 36 \div 2$ $\frac{1}{12} \text{ of } 36 = 36 \div 12$	$\frac{2,700 \text{ m}}{\frac{1}{7}}$ $\frac{7}{9} \text{ of } 2,700 = \frac{1}{9} \text{ of } 2,700 \times 7$	$\frac{4}{9} \text{ of } \underline{\hspace{0.5cm}} = 48$

Progression of skills	Key representations	
Calculate percentages Children first learn how to find 1%, 10%, 20%, 25% and 50% before using multiples of these amounts to find any percentage.	There are lots of % in 100% To find %, I need to divide by $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	% is made up of %, and % 100% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
Encourage children to see the multiplicative relationship between ratios. They will need to multiply or divide each value by the same number to keep the ratio equivalent. Double number lines and ratio tables help children to	For every , there are For every 6 children on a school tri adults children	p, there is 1 adult. Adults Children 1 6 2 12 3 18 ÷ 6
see both horizontal and vertical multiplicative relationships.	The ratio of children to adults is 6:	0 1 2 3 4 5 6 Adults